NABU-Landesverband Baden-Württemberg

Tübinger Straße 15 70178 Stuttgart

Autor:

Adam Schnabler

M.Sc. Biodiversität & Umweltbildung

Licht ins Dunkel bringen...

Gibt es das Insektensterben wirklich?

Stand 26. September 2017

Gliederung

1.	Die Insektenvielfalt in Deutschland	3
2.	Wo sind all die Insekten hin?	5
3.	Wo sind all die Vögel hin?	43
4.	Die Ursachen - 15 Hypothesen	54
5.	Der NABU fordert:	80

Die Insektenvielfalt in Deutschland

Insekten sind die artenreichste Klasse des gesamten Tierreichs

- Etwa 1.000.000 Insektenarten sind bekannt (= 60% aller bekannten Tierarten!)
- Etwa 40.000 Insektenarten in Mitteleuropa/Deutschland

Die Insektenvielfalt in Deutschland

Systematik

Biologen und Naturinteressierte beobachten einen zunehmenden Schwund der Insekten

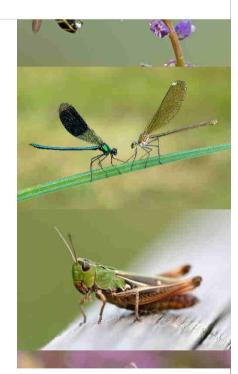
Gibt es ein Insektensterben wirklich? Was sagt die Wissenschaft?

FAKT 1

Beobachtung (Autofahrer heute) Deutschland

Autofahrer berichten, dass sie ihre Windschutzscheibe heute seltener reinigen müssen als früher.

- □ Subjektive Wahrnehmung
- > Wissenschaftlicher Beweis fehlt
- Aerodynamik der Automobile wurde ebenfalls optimiert
- Kann als Beleg für den Insektenrückgang nicht herangezogen werden


FAKT 2

Umfrage (Deutsche Wildtier Stiftung 2017) Deutschland

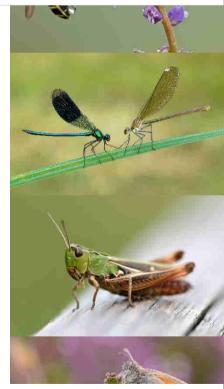
Repräsentative Umfrageergebnisse des Instituts für Demoskopie Allensbach im Auftrag der DWS

- 77 % der Befragten gaben an, dass sie immer weniger Schmetterlinge sehen
- 73 % finden, dass dies ein "großes" oder sogar "sehr großes" Problem ist
- 72 % der Befragten betrachten den Lebensraumverlust als Hauptursache insbesondere den Mangel an artenreichen Blumenwiesen

Damit stimmt der Eindruck der Bevölkerung mit dem überein, was Wissenschaftler bestätigen.

DEUTSCHE WILDTIER STIFTUNG (2017): Viele Deutsche vermissen die Schmetterlinge. Repräsentative Umfrageergebnisse des Instituts für Demoskopie Allensbach im Auftrag der Deutschen Wildtier Stiftung. Pressemitteilung vom 21.08.2017

DEUTSCHE WILDTIER STIFTUNG, Institut für Demoskopie Allensbach (2017): Abbildungen zur Umfrage. Präsentation.


FAKT 3

Rote Listen Deutschlands (Deutscher Bundestag 2017)

Auswertung der Roten Listen heimischer Insektengruppen

- **7.802** Insektenarten sind in Roten Listen aufgeführt

- davon 3696 "selten" bis "extrem selten"
- vor allem Habitatspezialisten unter den gefährdeten

DEUTSCHER BUNDESTAG (2017): Drucksache 18/13142. Antwort der Bundesregierung auf die Kleine Anfrage der Abgeordneten Steffi Lemke, Harald Ebner, Bärbel Höhn, weiterer Abgeordneter und der Fraktion BÜNDNIS 90/DIE GRÜNEN - Drucksache 18/12859 -. Insekten in Deutschland und Auswirkungen ihres Rückgangs.

FAKT 4

Auswertung Rote Listen Deutschlands (BfN 2012)

Ab- und Zunahme der Bestände von RL-Insektengruppen in den letzten 20 Jahren (1992-2012)

Ausgewählte Insektengruppen der Roten Liste 2011 in Deutschland (insgesamt = 2.409 Arten) (BfN 2012)

MELLIFERA BERLIN (2017): Der stumme Frühling. Das Bienensterben ist Teil von etwas noch Größerem. In: http://mellifera-berlin.de/der-stumme-fruehling-dasbienensterben-ist-teil-von-etwas-noch-groesserem-anteportas/

FAKT 5

(Gatter 2017, mündl.) Baden-Württemberg / Randecker Maar

Die ornithologische Beobachtungsstation am Randecker Maar dokumentiert seit dem Jahr 1972 auch den Herbstzug der Schmetterlinge und Schwebfliegen.

Im Beobachtungszeitraum konnten erfasst werden:

	"früher"	"heute"	
Kohlweißlinge	> 1000 / Tag	< 20 / Tag	= Rückgang um ca. 98 %
Tagpfauenaugen	> 400 / Tag	~ 1/Tag	= Rückgang um ca. 99 %
Schwebfliegen	> 1500 / Tag	"Erfassung nicht mehr lohnend"	= Rückgang um ca. ?? %

SCHORRADT T. (2017): Kirchheimer Vogelkundler schlägt Alarm. Die Schmetterlinge fliegen nicht mehr. In: Stuttgarter Zeitung 37/2017

FAKT 6

Studie (Schwenninger & Scheuchl 2016) Baden-Württemberg

Erfassung der häufigen Mörtelbienen (*Megachile parietina*) am Goldberg im Nördlinger Ries in den Jahren 2006 bis 2016 (10 Jahre)

	2006	2010	2016	
Anzahl Nester	34	33	15	= Rückgang um 55 %

FAKT 7

Studie (Schwenninger & Scheuchl 2016) Baden-Württemberg

Erfassung der Schmalbienen-Art Lasioglossum calceatum im Naturschutzgebiet (NSG) "Eierberg" auf der Schwäbischen Alb in den Jahren 1970 bis 2016 (46 Jahre)

	1970	2016	
Anzahl Nester	130	5	= Rückgang um 95 %

FAKT 8

Studie (Schwenninger & Scheuchl 2016) Bayern / Dingolfing

Erfassung der Wildbienen in den Isarauen bei Dingolfing in den Jahren 2006 bis 2016 (10 Jahre)

	2006	2016	
Anzahl Arten	58	14	= Rückgang um 75 %

FAKT 9

Studie (Habel et al. 2015) Bayern / Regensburg

Erfassung der Tagfalter und Widderchen im NSG "Am Keilstein". Auswertung von Literatur- und Sammlungsdaten der Jahre 1770 bis 2013 (~200 Jahre)

	Zeitraum 1840 - 1879		Zeitraum 1900 - 1929		Zeitraum 1970 - 2010		Zeitraum 2010 - 2013
Anzahl Arten	130		133		121		71
Dauerhaft verschwunden		+3		- 12		- 50	

vor allem Habitatspezialisten betroffen

HABEL J.C. et al. (2015): Butterfly community shifts over two centuries. In: Conservation Biology 30 (4) 2015

HABEL J.C. et al. (2016): Früher gab es mehr Schmetterlinge. Langzeitstudie untersucht Entwicklung von Tagfaltern und Widderchen. In: naturmagazin 3/2016

FAKT 10

Studie (Reichholf 2017, mündl.) Bayern / Aigen / München

Erfassung der Nachtfalter im Inntal bei Aigen und am Stadtrand von München seit 1980 bis 2016 (36 Jahre)

	Rückgang der Individuenzahl	Rückgang der Artenzahl		
Inntal bei Aigen	50 %	55 %		
Stadtrand München	Heute gibt es nur 1/3 so viele Nachtfalter auf den Wiesen im Inntal bei Aigen als in den Randbezirken Münchens! Lebensbedingungen für Nachtfalter sind in Siedlungsgebieten besser geworden als im Agrarland.			

FAKT 11

Studie (Reichholf 2017) Bayern / Aigen

Erfassung der wiesenbewohnenden Tagfalter im Inntal bei Aigen von 1976 bis 2016 (40 Jahre)

Abnahme der Arten um 73 %

REICHHOLF J. (2017): Das Verschwinden der Schmetterlinge. Vorabinformationen aus dem Statusbericht von Prof. Dr. Josef H. Reichholf, 2017. Herausgegeben von: Deutsche Wildtier Stiftung

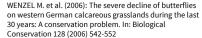
FAKT 12

Studie (Flügel 2016) Hessen

Erfassung der Silbermund-Grabwespe (*Lindenius albilabris*) von 1990 bis 2015 (25 Jahre) in Hessen

Bestandsrückgang um 70 %

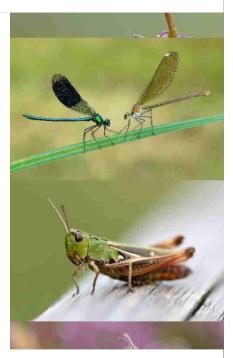
VON ORLOW M. (2017): Bestandsaufnahme des Insektensterbens. Ein Beitrag der BAG Hymenoptera des NABU zum Fachgespräch "Stummer Frühling ante portas – Was tun gegen das dramatische Insektensterben?". Bündnis 90/DIE GRÜNEN Bundestagsfraktion. Präsentation vom 6.03.2017


FAKT 13

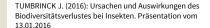
Studie (Wenzel et al. 2006) Rheinland-Pfalz / Trier

Erfassung der Falter an 7 Standorten bei Trier in den Jahren 1972 und 2001 (30 Jahre)

Eigenschaften	Rückgang		Rückgang	
Habitatansprüche allgemein	Generalisten	14,3 %	Spezialisten	55,5 %
Habitatansprüche Struktur	niedrig	29,8 %	hoch	60,0 %
Habitatansprüche Größe	< 4 ha	43,2 %	> 16 ha	62,8 %
Wanderfähigkeit	hoch	40,2 %	niedrig	56,3 %
Populationsgröße	groß	28,6 %	klein	61,1 %
Nahrungspräferenzen (Larven)	polyphag	36,5 %	monophag	66,2 %
Fortpflanzung	r-Stratege	45,0 %	K-Stratege	58,6 %

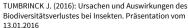

FAKT 14

Studie (Entomologischer Verein Krefeld e.V. 2017) Nordrhein-Westfalen / Krefeld


Erfassung der Biomasse flugaktiver Insekten mit Malaisefallen im NSG "Orbroicher Bruch" 1989 bis 2013 (24 Jahre)

	1989	2013	
Standort 1	1117,1 g	257,3 g	= Rückgang um 77 %
Standort 2	1425,6 g	294,4 g	= Rückgang um 79 %

ENTOMOLOGISCHER VEREIN KREFELD E.V. (2017): Bestandsrückgänge von Fluginsekten in Offenlandbiotopen der Kulturlandschaft – Methoden, Biomassen, Artenspektren. Präsentation.


FAKT 15

Studie (Entomologischer Verein Krefeld e.V. 2014) Nordrhein-Westfalen / Wahnbachtal

Erfassung der Schwebfliegen an 6 Standorten im Wahnbachtal von 1989 bis 2014 (25 Jahre)

	1989	2014	
Artenzahl	143	104	= Rückgang um 24 %
Individuenzahl	17291	2737	= Rückgang um 84 %

FAKT 16

Studie (Entomologischer Verein Krefeld e.V. 2014) Nordrhein-Westfalen / Wahnbachtal

Erfassung der Großschmetterlinge an 6 Standorten im Wahnbachtal von 1989 bis 2014 (25 Jahre)

	1989	2014	
Artenzahl	132	103	= Rückgang um 22 %
Individuenzahl	2096	922	= Rückgang um 56 %

TUMBRINCK J. (2016): Ursachen und Auswirkungen des Biodiversitätsverlustes bei Insekten. Präsentation vom

FAKT 17

Studie (Schöpwinkel 2017) Nordrhein-Westfalen

Vergleich der Roten Listen Deutschlands und Nordrhein-Westfalens (2011) zum Gefährdungsstand der Tagfalter

	Rote Liste BRD	Rote Liste NRW	Rote Liste BW 04
Arten gelistet	184	129	190
Status "bestandsgefährdet" (3), "stark gefährdet" (2) "vom Aussterben bedroht" (1) "ausgestorben" (0)	41,8 % (77)	69,9 % (90)	52,6 % (100)
<u>Status</u> "vom Aussterben bedroht" (1)	6,5 % (12)	18,6 % (24)	15,3 % (29)
<u>Status</u> "ausgestorben" (0)	2,7 % (5)	24,8 % (32)	3,7 % (7)

FAKT 18

Studie (Säring et al. 2016, Mellifera 2017) Sachsen / Leipzig

Erfassung der Wildbienen und Wespen im NSG "Burgaue" im Rahmen des Leipziger Auwaldkranprojekts von 2002 bis 2016 (14 Jahre)

	Rückgang bei Wildbienen und Wespen	
Artenzahl	49 %	
Individuenzahl	71 %	

Studie zeigt, dass sogar natürliche Waldbiotope heute nur noch einen Bruchteil der Insekten beherbergen wie noch vor 14 Jahren

SÄRING F., et al. (2016): Untersuchung zum Vorkommen der Aculeata (Hymenoptera) im Kronenraum des Leipziger Auwaldes.

MELLIFERA BERLIN (2017): Der stumme Frühling, Das Bienensterben ist Teil von etwas noch Größerem. In: http://mellifera-berlin.de/der-stumme-fruehling-dasbienensterben-ist-teil-von-etwas-noch-groesserem-antenortas/

VON ORLOW M. (2017): Bestandsaufnahme des Insektensterbens. Ein Beitrag der BAG Hymenoptera des NABU zum Fachgespräch "Stummer Frühling ante portas – Was tun gegen das dramatische Insektensterben?". Bündnis 90/DIE GRÜNEN Bundestagsfraktion. Präsentation vom 6.03.2017

Studie (Schuch et al. 2011) Niedersachsen / Stolzenau / Leese

Erfassung der Heuschrecken, Zikaden und Wanzen an mehreren Standorten bei Stolzenau und Leese in den Jahren 1951 und 2009

	Individuenzahl
Heuschrecken	- 63 %
Zikaden	- 64 %
Wanzen	+ 28 %

Erklärung:

Zunahme wärmeliebender Insektengruppen durch Klimawandel begünstigt, jedoch Abnahme der Individuenzahlen durch verschlechterte Lebensbedingungen.

Leichte Zunahme der Artenvielfalt bei allen drei Insektengruppen

FAKT 20

Studie (Fartmann 2017) Deutschland

Habitatqualität, Habitatheterogenität, Habitatgröße und Habitatkonnektivität als Faktoren für die Insektendiversität im Offenland

1. Habitatqualität und -heterogenität

Die Artenzahl der Tagfalter-Habitatspezialisten nimmt mit der Diversität der Wirtspflanzen im Habitat zu

Eine hohe Phytodiversität in Offenlandhabitaten ist meist die Folge von Nährstoffarmut und extensiver Nutzung (dabei haben frühe Sukzessionsstadien eine besondere Bedeutung)

Warum Nährstoffarmut?:

- schwächt konkurrenzstarke Pflanzen
- bietet Regenerationsnischen für konkurrenzschwache Pflanzen (= mehr Nischenvielfalt auch für Insekten)
- niedrige Wuchshöhe
- mehr Licht in Bodennähe
- wärmeres Mikroklima fördert Entwicklung und Aktivität der Pflanzen, Insekten und Spinnen

FARTMANN T. (2017): Überleben in fragmentierten Landschaften. Grundlagen für den Schutz der Biodiversität Mitteleuropas in Zeiten des globalen Wandels. In: Naturschutz und Landschaftsplanung 49 (9), 2017

FAKT 20

Studie (Fartmann 2017) Deutschland

1. Habitatqualität und -heterogenität

Des Weiteren wird die Phytodiversität durch eine hohe Habitatheterogenität gefördert, da dann Arten mit unterschiedlichen Habitatansprüchen koexistieren können (unterschiedliche Hanglagen, Licht-Schatten-Verhältnisse, Bodenbeschaffenheit, Feucht- und Trockenstandorte, ...)

Zahlreiche Insektenarten sind auf eine hohe Habitatheterogenität angewiesen, da sie im Laufe ihrer Entwicklung Mikrohabitatwechsel vollziehen müssen (z.B. Langfühlerschrecken)

FARTMANN T. (2017): Überleben in fragmentierten Landschaften. Grundlagen für den Schutz der Biodiversität Mitteleuropas in Zeiten des globalen Wandels. In: Naturschutz und Landschaftsplanung 49 (9), 2017

FAKT 20

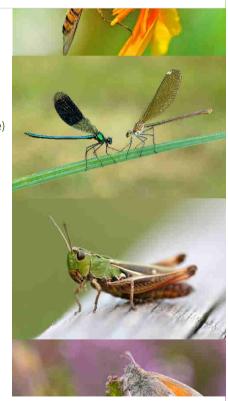
Studie (Fartmann 2017) Deutschland

2. Habitatgröße

- Mit zunehmender Habitatgröße steigt zumeist auch die Habitatheterogenität
- Insekten benötigen verschieden große Mindestflächen für den Aufbau langfristig überlebensfähiger Populationen

<u>Beispiel:</u> Der Mittlere Perlmuttfalter (*Argynnis niobe*) benötigt mind. 100 Hektar zusammenhängende Graudünenfläche (Untersuchung Ostfriesische Inseln)

FARTMANN T. (2017): Überleben in fragmentierten Landschaften. Grundlagen für den Schutz der Biodiversität Mitteleuropas in Zeiten des globalen Wandels. In: Naturschutz und Landschaftsplanung 49 (9), 2017



FAKT 20

Studie (Fartmann 2017) Deutschland

3. Habitatkonnektivität

- 3.1 Arten mit geschlossenen Populationen (z.B. Kurzflügelige Beißschrecke)
- können auch über längere Zeiträume in isolierten Habitaten überleben, sofern diese eine günstige Habitatqualität aufweisen und groß genug sind
 - Jedoch benötigen auch Arten, die geschlossene Populationen ausbilden, für ihre Ausbreitung eine gute Habitatkonnektivität, da diese meist nur eine geringe Mobilität aufweisen

FARTMANN T. (2017): Überleben in fragmentierten Landschaften. Grundlagen für den Schutz der Biodiversität Mitteleuropas in Zeiten des globalen Wandels. In: Naturschutz und Landschaftsplanung 49 (9), 2017

FAKT 20

Studie (Fartmann 2017) Deutschland

3. Habitatkonnektivität

- 3.2 Arten mit Metapopulationen (z.B. Ehrenpreis-Scheckenfalter)
- Eine gute Habitatvernetzung ist für diese Arten eine zwingende Voraussetzung für das Vorkommen
- Starker Einfluss der Struktur der umgebenden Landschaft auf die Wanderbewegungen zwischen den Habitaten (z.B. Wasserläufe, Böschungen, Heckensäume)
 - Dies trifft insbesondere auf Insektenarten mit geringerer Mobilität zu (z.B. Heuschrecken, Zikaden und Tagfalter)

FARTMANN T. (2017): Überleben in fragmentierten Landschaften. Grundlagen für den Schutz der Biodiversität Mitteleuropas in Zeiten des globalen Wandels. In: Naturschutz und Landschaftsplanung 49 (9), 2017

Stickstoffeinträge, Pestizide, ...)

FAKT 20

Studie (Fartmann 2017) Deutschland

FAZIT

Um das langfristige Überleben zahlreicher Insektenarten zu sichern, sind eine hohe Habitatqualität und heterogenität, eine ausreichende Habitatgröße und eine gute Konnektivität der Habitate zu gewährleisten

Gefährdung durch:

Habitatqualität/ ➤ **Degradierung** (Nutzungsaufgabe, Intensivierung, Heterogenität

Habitatgröße → Verlust (Umbruch von Wiesenflächen, Zerstörung durch Straßen und Siedlungsbau, ...)

Habitatkonnektivität ---> Fragmentierung (Zerschneidung durch Straßenund Siedlungsbau, ...)

FARTMANN T. (2017): Überleben in fragmentierten Landschaften, Grundlagen für den Schutz der Biodiversität Mitteleuropas in Zeiten des globalen Wandels. In: Naturschutz und Landschaftsplanung 49 (9),

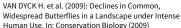
FAKT 21

Studie (Maes & Van Dyck 2000) Belgien / Flandern

Analyse der Populationsverluste der 64 in Flandern heimischen Tagfalterarten von 1901 bis 2000 (100 Jahre)

- 19 der 64 Tagfalterarten sind seit 1901 ausgestorben
 - Flandern ist die Region mit der höchsten Anzahl ausgestorbener Tagfalter in Europa
- Die Aussterberate hat sich seit 1950 verachtfacht
- 50 % der verbliebenen Arten weisen einen Bestandsrückgang auf
- Ausbreitung: 90 % der Vorkommen sind seit 1901 verschwunden
- Besonders betroffen sind Arten des mageren Grünlandes und solche mit niedrigem Ausbreitungspotenzial

MAES D., Van Dyck H. (2001): Butterfly diversity loss in Flanders (north Belgium): Europe's worst case scenario? In: Biological Conservation 99 (2001) 263-276


FAKT 22

Studie (Van Dyck et al. 2008) Niederlande

Analyse der Populationsverluste bei 20 Schmetterlingsarten in Landschaften mit hoher anthropogener Nutzung zwischen 1992 und 2007 (15 Jahre)

- ⇒ 55 % (11 von 20 Arten) sind im Bestand stark gefallen
- Rückgang erfolgte vor allem in der Agrarlandschaft, in Wäldern und in urbanen Landschaften
- In Naturschutzgebieten sind die Bestände stabil geblieben

Studie (Biesmeijer et al. 2006) Niederlande / Großbritannien

Untersuchung der Bestandsentwicklung solitärer Wildbienenarten und Schwebfliegen sowie der Auswirkungen auf die Bestandsentwicklung der auf Insektenbestäubung angewiesenen Wildpflanzen, vor und nach 1980

Bestands- entwicklung	Niederlande	Großbritannien
Wildbienen	Signifikante Abnahme in % der Erfassungsgebiete	Signifikante Abnahme in % der Erfassungsgebiete
	67 %	52 %
	Signifikante Zunahme in % der Erfassungsgebiete	Signifikante Zunahme in % der Erfassungsgebiete
	4 %	10 %
Schwebfliegen	Signifikante Abnahme in % der Erfassungsgebiete	Signifikante Abnahme in % der Erfassungsgebiete
	17 %	33 %
	Signifikante Zunahme in % der Erfassungsgebiete	Signifikante Zunahme in % der Erfassungsgebiete
	34 %	25 %

Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. SCIENCE, 10.1126/science.1127863

Studie (Biesmeijer et al. 2006) Niederlande / Großbritannien

Untersuchung der Bestandsentwicklung solitärer Wildbienenarten und Schwebfliegen sowie der Auswirkungen auf die Bestandsentwicklung der auf Insektenbestäubung angewiesenen Wildpflanzen, vor und nach 1980

- Abnahme der Artenzahl vor allem bei den Habitatspezialisten. Zunahme vor allem bei zugewanderten südlichen Arten (Klimawandel?). Relativ stabile Bestandsentwicklung bei den Habitat-Generalisten
- Signifikante parallele Bestandsabnahme der auf Insektenbestäubung angewiesenen Wildpflanzen zeigt möglichen Zusammenhang auf (Kaskadeneffekt)

BIESMEIJER J.C. et al. (2006): Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. SCIENCE, 10.1126/science.1127863

FAKT 24

Studie (Butterfly Conservation 2013, Fox et al. 2013) Großbritannien

Erfassung der Nachtfalter in ganz Großbritannien in den Jahren 1968 bis 2007 (40 Jahre) im Rahmen des "The State of Britains Larger Moths"-Reports 2013

- Die Individuenzahl der Nachtfalter in Großbritannien hat sich seit 1968 um Ø 28 % reduziert
- Im Süden Großbritanniens ist die Individuenzahl sogar um 40 % zurückgegangen
- Bei 2/3 der 337 in GB heimischen Nachtfalterarten zeigen seit 1968 einen Bestandsrückgang. Bei 50 % dieser Arten hat sich die Zahl der Individuen halbiert

FAKT 25

Studie (Brooks et al. 2012) Großbritannien

Erfassung der Laufkäfer zwischen 1994 und 2008 (14 Jahre) an 11 Orten in ganz Großbritannien

- Seit 1994 ist 3/4 der heimischen Laufkäferarten in ihrem Bestand zurückgegangen
- Der Süden Großbritanniens ist mit einem Rückgang von 52 % besonders stark betroffen

BROOKS D.R. et al. (2012): Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. In: Journal of Applied Ecology 2012, 49, 1009-1019

FAKT 26

Studie (Szentkiralyi 2002) Ungarn / Tompa

Erfassung der großen Nachtfalter mit Lichtfallen nahe Tompa in Ungarn zwischen 1962 und 2000 (38 Jahre)

	1962	2000	
Artenzahl	325	210	= Rückgang um 35 %
Individuenzahl	~ 35000	~ 10000	= Rückgang um 70 %

Szentkiralyi führt die massiven Rückgänge auf die anthropogenen Veränderungen der Umwelt zurück: Waldnutzung, Verschwinden extensiven Grünlands, Zunahme von Ackerböden, Entwässerung, Zunahme der Dürreperioden und Verschwinden von Kleingewässern

SZENTKIRALYI F. (2002): Fifty-year-long insect survey in Hungary: T. Jermy's contributions to light-trapping. In: Acta Zoologica Academiae Scientiarum Hungaricae 48 (Suppl. 1), pp. 85-105, 2002

FAKT 27

Studie (Van Swaay et al. 2005) Europa

Untersuchung des Zustandes und der Verbreitung aller 576 europäischen Rote-Liste-Falterarten zwischen 1980 und 2005 (25 Jahre)

- Die Verbreitung der 576 R-L-Falterarten ist insgesamt um 11 % zurückgegangen
- Die Verbreitung der Generalisten hat sich um 1 % reduziert
- Die Verbreitung der Spezialisten ist um 19 % (Wiesenarten), 15 % (Feuchtgebietsarten) und 14 % (Waldarten) zurückgegangen! Anzeichen für Verluste bedeutender Habitate

VAN SWAAY C., Warren M., Lois G. (2006): Biotope use and trends of European butterflies. In: Journal of Insect Conservation (2006) 10: 189-209

FAKT 28

Grünlandschmetterlingsindikator (European Environment Agency 2013) Europäische Union

Auf 3.500 Transekten wurden in 19 europäischen Ländern für den Zeitraum 1990 bis 2011 (21 Jahre) Daten für 17 Tagfalterarten erhoben und ausgewertet

			100	
Art	Trend	Habitatansprüche	Erläuterung	
Thymian-Ameisenbläuling	-	hoch		
Kleines Wiesenvögelchen	L	niedrig	Auch häufige Arten von neg. Einwirkungen betroffen	
Mauerfuchs	睑	hoch		
Kleiner Feuerfalter	<u>k</u>	hoch		
Heller & Dunkler Wiesenknopf-Ameisenbläuling	<u>k</u>	hoch		
Großes Ochsenauge	贮	niedrig	Auch häufige Arten von neg. Einwirkungen betroffen	
Hauhechel-Bläuling	<u>k</u>	mäßig		The state of the s
(Dunkler-) Kronwicken-Dickkopffalter	L	mäßig		1
Aurorafalter	4	niedrig	Wirtspflanzen z.B. Wiesen-Schaumkraut, Lauchkraut häufig	
Himmelblauer Bläuling	←	hoch	Wenige Vorkommen sind gut geschützt	
Roter Würfel-Dickkopffalter	—	hoch	Eher südeuropäische Art - profitiert vom wärmeren Klima	In den 19 europäischen Ländern ist die
(Goldener-) Skabiosen-Scheckenfalter	?	hoch		Ländern ist die
Rostfarbiger Dickkopffalter	?	niedrig		Individuenzahl der 17 Tagfaltoren
Rotklee-Bläuling	?	mäßig		Tagfalterarten um insgesamt 50 % zurück
Zwerg-Bläuling	?	mäßig		gegangen!
Silbergrüner Bläuling	?	mäßig		
Mattscheckiger Braun-Dickkopffalter	?	hoch		

FAKT 29

Studie (Beketov et al. 2013) Deutschland/Frankreich/Australien

Untersuchung der Auswirkungen von Pestiziden auf die Artenvielfalt der Wirbellosen in Fließgewässern in Deutschland, Frankreich und Australien.

- Abnahme der Artenvielfalt bei Pestizidbelastung um bis zu 42 % (Signifikante Abnahme auch innerhalb der in Deutschland zulässigen Grenzwerte)
- Betroffen sind vor allem sensible Organismen wie Steinfliegen, Köcherfliegen, Libellenlarven und der Steinkrebs (Indikatororganismen für Gewässergüteklasse I-II)

FAKT 29

Studie (Beketov et al. 2013) Deutschland/Frankreich/Australien

Untersuchung der Auswirkungen von Pestiziden auf die Artenvielfalt der Wirbellosen in Fließgewässern in Deutschland, Frankreich und Australien.

Des Weiteren zeigen Schäfer et al. (2016) die multiple Wirkung organischer Toxine aus der Landwirtschaft auf Organismen des Makrozoobenthos in Gegenwart von Degradierung, Nährstoffeintrag und Neobiota, als zentrale Stressoren in Gewässerökosystemen.

SCHÄFER R.B., Kühn B., Malaj E., König A., Gergs R. (2016): Contribution of organic toxicants to multiple stress in river ecosystems. Freshwater Biology (2016) 61, 2116-2128

Viele weitere Studien aus ganz Europa!

Die hier vorgestellten Studien, Auswertungen und Umfragen zeigen nur einen kleinen Anteil aller repräsentativen Untersuchungen und Beweise für den Insektenrückgang in Europa.

Weitere eindrückliche Studien finden sich beispielsweise in Österreich, in der Schweiz oder in Spanien sowie in den USA und Kanada.

Wissenschaftler beobachten enorme Bestandseinbrüche bei den Vogelarten des Grün- und Offenlandes.

Ihre Hauptnahrungsquelle sind Insekten...

FAKT 1

Bilanz "Vögel in Deutschland 2013" (DDA, BfN, LAG VSW)

Auswertung des Autors zum Zustand der Brutvogelarten auf Grundlage der Bilanz "Vögel in Deutschland 2013"

Trend: letzte 25 Jahre	Trend: letzte 12 Jahre	
18,5 % (46 Arten) der 248 Brutvogelarten in Deutschland nehmen im Bestand leicht bis stark ab	25,8 % (64 Arten) der 248 Brutvogelarten in Deutschland nehmen im Bestand leicht bis stark ab	
Davon sind 22 Arten typische, insektenfressende Vögel der Agrar- und Offenlandschaft (ohne Wald und Gewässer)	Davon sind 30 Arten typische, insektenfressende Vögel der Agrar- und Offenlandschaft (ohne Wald und Gewässer)	

Markanter Anstieg der Bestandsrückgänge in den letzten 12 Jahren

FAKT 2

Bilanz "Vögel in Deutschland 2014" (DDA, BfN, LAG VSW)

Auswertung des Zustandes der Insekten- und Spinnenfressenden Brutvogelarten im Offenland

Trend: letzte 25 Jahre	Trend: letzte 12 Jahre	
33 %	50 %	
der Arten weist Bestandsrückgänge auf	der Arten weist Bestandsrückgänge auf	

FAKT 2

Bilanz "Vögel in Deutschland 2014" (DDA, BfN, LAG VSW)

Insgesamt haben die Bestände der für die Agrar- und Offenlandschaft typischen Vogelarten deutlich abgenommen...

Trend: letzte 12 Jahre

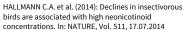
50 %

der Arten weist Bestandsrückgänge auf

Deutliche Bestandsrückgänge bei den Vogelarten der Agrar- und Offenlandschaft

NABU

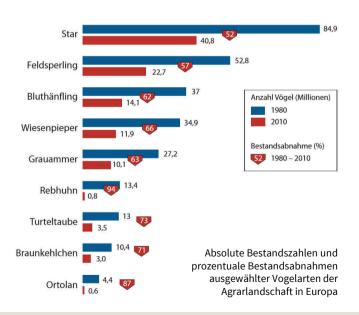
FAKT 3


Studie (Hallmann et al. 2014) Niederlande

Untersuchung der Bestandsentwicklung 15 insektenfressender Vogelarten des Offenlandes im Zusammenhang mit Nachweisen des Neonicotinoids *Imidacloprid* in Gewässern

555 Imidacloprid-Messungen und 354 Vogel-Erfassungsorte in den gesamten Niederlanden

- In Regionen mit einer Imidaclopridkonzentration von mehr als 20 ng/l ist der Bestand der 15 Vogelarten um durchschnittlich 3,5 % niedriger als in den unbelasteten Regionen
- Bei 13 (von 15) Vogelarten sinkt der Bestand deutlich und signifikant mit steigender Imidaclopridkonzentration (z.B. Rauchschwalbe, Feldlerche)

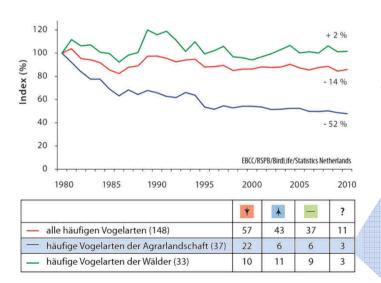


FAKT 4

Analyse des BirdLife International & European Bird Census Council (Dröschmeister et al. 2012) Europäische Union

Europaweite Analyse zeigt die Bestandsentwicklung der Vögel in der Agrarlandschaft zwischen 1980 und 2010 (30 Jahre)

Europaweit hat die Agrarlandschaft im Erfassungszeitraum 50 % ihrer typischen Vogelarten verloren. Das entspricht einer Bestandsabnahme von rund 300 Millionen Individuen



FAKT 4

Analyse des BirdLife International & European Bird Census Council (Dröschmeister et al. 2012) Europäische Union

Europaweite Analyse zeigt die Bestandsentwicklung der Vögel in der Agrarlandschaft zwischen 1980 und 2010 (30 Jahre)

Die Analyse stellt deutlich heraus, dass der Schwund vor allem in der Agrarlandschaft zugenommen hat

37 Vogelarten bilden den europäischen "Farmland Bird Indicator" (Agrarvogelindikator). Derzeit nehmen davon etwa viermal so viele Arten ab wie zu. Aktuell zeigt der europäische Indikator seit 1980 eine Abnahme um 52 Prozent

DRÖSCHMEISTER R. et al. (2012): Zahl der Vögel halbiert: Landwirtschaftspolitik der EU muss umweltfreundlicher werden. In: Der Falke 59. 2012

FAKT 5

Studie (Rioux Paquette et al. 2014) Kanada / Québec

Hypothese: Habitatqualität spiegelt sich im Körpergewicht der insektenfressenden Brutvogelarten eines Gebietes wider. Untersuchung an 2918 Sumpfschwalben mit 1483 Bruten zwischen 2005 und 2011 (7 Jahre)

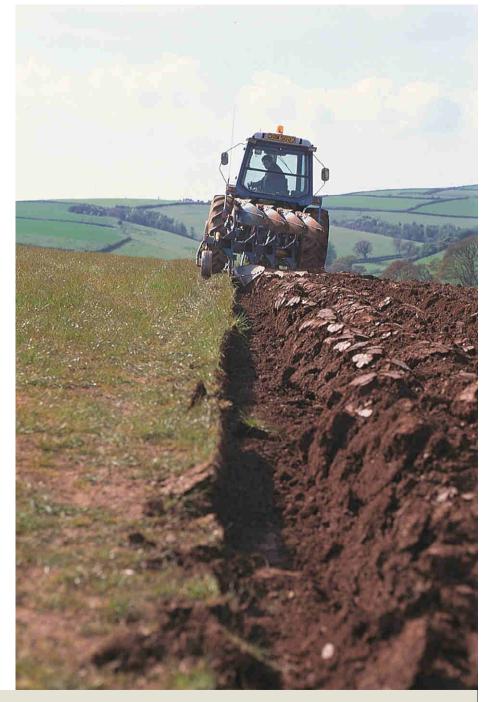
- Im Untersuchungszeitraum hat die Anzahl der Bruten in Gebieten mit intensiver Landwirtschaft um 19 % abgenommen
- Dabei hat das Körpergewicht der Küken signifikant abgenommen – vor allem bei den Weibchen (Abnahme der Körpermasse um durchschnittlich 8 %)

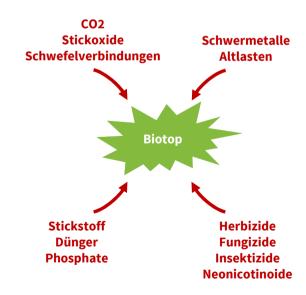
Dieser Trend wird als mögliche Folge des zunehmenden Nahrungsmangels in den landwirtschaftlich intensiv genutzten Habitaten diskutiert

Resümee

- Mindestens 24 wissenschaftliche Studien aus Deutschland, Großbritannien, Belgien und den Niederlanden (sowie eine Vielzahl weiter Studien aus ganz Europa) zeigen massive Rückgänge der Artenund Individuenzahlen wichtiger Insektengruppen, in den vergangenen 20 bis 200 Jahren. Auswertungen der Roten-Listen in Deutschland und Europa bestätigen diesen Schwund
- Mindestens 16 Studien zeigen, dass vor allem Insektenarten mit gehobenen Lebensraumansprüchen ("Spezialisten") massiv im Bestand abgenommen haben. Auswertungen der Roten-Listen bestätigen diesen Trend. Zahlreiche Arten sind innerhalb der Untersuchungszeiträume aus den Untersuchungsgebieten verschwunden
- Mindestens 3 wissenschaftliche Studien zeigen einen Zusammenhang der Bestandsabnahme vieler insektenfressender Vogelarten des Offenlandes mit dem zunehmenden Schwund der Insekten

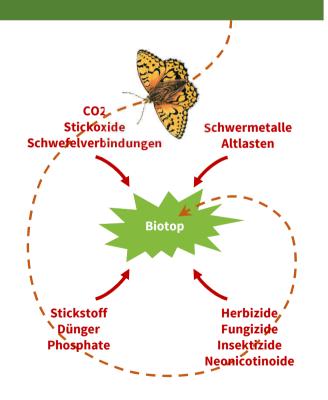
- Studien mit vollständigen Datensätzen zeigen eine signifikante Zunahme der Bestandsrückgänge der untersuchten Insektengruppen seit Mitte der 90er Jahre. Zu dieser Zeit wurden vielfach Neonicotinoide in der Landwirtschaft zugelassen
- Die von den Wissenschaftlern ermittelten Bestandsrückgänge werden auch von der Bevölkerung wahrgenommen und bestätigt


Ja, das Insektensterben gibt es wirklich!


Welche Ursachen für den Insektenrückgang sehen Experten und Wissenschaftler?

1 Vergiftung der Landschaft

Tiere und Pflanzen sowie ihre Lebensstätten sind einer kontinuierlichen Belastung durch Gifte und Schadstoffe aus der Landwirtschaft, der Industrie, aus Haushalten und dem Straßenverkehr ausgesetzt. Viele Schadstoffe werden von den Organismen aufgenommen und kumulieren sich zu tödlichen Mengen in der Nahrungskette oft über lange Zeiträume. Pestizide aus der Landwirtschaft wirken schädigend auf entsprechende Organismen-gruppen.



1 Vergiftung der Landschaft

Gasförmige, flüssige oder leicht lösliche Schadstoffe werden verdriftet und entfalten auch weit außerhalb ihrer Eintragungsorte ihre tödliche Wirkung.

Flugaktive Insekten haben oft einen großen Aktionsradius. Durch ihre Mobilität werden sie von Schadstoffen im Umfeld belastet.

BERNHARDT E.S. et al. (2017): Synthetic chemicals as agents of global change. In: The Ecological Society of America, Front Ecol Environ 2017; doi: 10.1002/fee.1450

BOTIAS C. et al. (2015): Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. In: Environmental Science & Technology; DOI: 10.1021/acs.est 5b03459

BOITAS C. et al. (2017): Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. In: Environmental Pollution 2017; DOI: 10.1016/j.envpol.2017.01.001

DOCCOLA J.J. et al. (2012): Treatment Strategies Using Imidacloprid in Hemlock Wolly Adelgid (Adelges tsugae Annand) Infested Eastern Hemlock (Tsuga canadensis Carriére) Trees. In: Arboriculture & Urban Forestry 38 (2): March 2012

2 Neonicotinoide

Einen wahren Kahlschlag in der Insektenfauna verursachen die seit Anfang der 1990er Jahre in der Landwirtschaft eingeführten Neonicotinoide. Hierbei handelt es sich um Insektizide, welche schädigend in das Nervensystem von Insekten eingreifen (Die am häufigsten eingesetzten Wirkstoffe sind Thiacloprid und Acetamiprid)

- schädigen den Orientierungssinn
- reduzieren das Lernvermögen
- 🖒 schwächen das Immunsystem
- erhöhen bei Honigbienen die Replikation des tödlichen DWV-Virus-Genoms um mehr als das Tausendfache

Deutschland 2015:

Rund 52 % der im Inland abgegebenen und ausgeführten Insektizide sind Neonicotinoide

ENTOMOLOGISCHER VEREIN KREFELD E.V. (2017): Kenntnisstand zu Pestiziden und "Nichtzielarten" – Toxizität, Persistenz, systemische Wirkung und Anwendung im Bereich "geschützter Biotope".

> Kenntnisstand zu Pestiziden und "Nichtzielarten" – Toxizität, Persistenz, systemische Wirkung und Anwendung im Bereich "geschützter Biotope". Präsentation.

otinoid use
alifornia. In:
Beobachtungen, Zusammenhänge. Präsentation zur
ty
Fachtagung der Naturschutzbeauftragten und der
hauptamtlichen Naturschutzfachkräfte im
Regierungsbezirk Karlsruhe am 28. Juni 2017

TSVETKOV N. et al. (2017): Chronic exposure to neonicotinoids reduces honey bee health near corn crops. In: SCIENCE Magazine, Vol. 356, 1396-1397 (2017)

WENZEL K-W. (2015): Neonikotinoid-Insektizide als Verursacher des Bienensterbens. Ein Addendum zum Beitrag von Hans-Joachim Flügel in der Märzausgabe der EZ (Hymenoptera: Apidae). In: Entomologische Zeitschrift, Schwanfeld, 125 (2) 2015

WOOD J.T., Goulson D. (2017): The Environmental Risks of neonicotinoid pesticides: a review of the evidence post-2013. In: bioRxiv The Preprint Server For Biology; DOI: 10.1101/098897

WOODCOCK B.A. et al. (2016): Impacts of neonicotinoid use on long-term population changes in wild bees in England. In: NATURE COMMUNICATIONS; DOI: 10.1038/ncomms12459

WOODCOCK B.A. et al. (2017): Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. In: SCIENCE Magazine, Vol. 356, 1393-1395 (2017); DOI: 10.1126/science.aaa1190

bees foraging

esticides. In:

469-477

epend on

secticide

soil in fields

xicology and

E Magazine.

BERNHARDT E.S. et al. (2017): Synthetic chemicals as agents of global change. In: The Ecological Society of America, Front Ecol Environ 2017; doi: 10.1002/fee.1450

BOTIAS C. et al. (2015): Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. In: Environmental Science & Technology; DOI: 10.1021/acs.est 5b03459

BOITAS C. et al. (2017): Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. In: Environmental Pollution 2017; DOI: 10.1016/j.envpol.2017.01.001

DOCCOLA J.J. et al. (2012): Treatment Strategies Using Imidacloprid in Hemlock Wolly Adelgid (Adelges tsugae Annand) Infested Eastern Hemlock (Tsuga canadensis Carriére) Trees. In: Arboriculture & Urban Forestry 38 (2): March 2012

2 Neonicotinoide

Einen wahren Kahlschlag in der Insektenfauna verursachen die seit Anfang der 1990er Jahre in der Landwirtschaft eingeführten Neonicotinoide. Hierbei handelt es sich um Insektizide, welche schädigend in das Nervensystem von Insekten eingreifen (Die am häufigsten eingesetzten Wirkstoffe sind Clothianidin, Thiamethoxam und Imidacloprid)

🖒 verkürzen die Lebensdauer

🖒 bis zu 7000-fach wirksamer als DDT

🖒 gut wasserlöslich, schwer abbaubar

4 Jahre Wirksamkeit in mehrjährigen Pflanzen nachgewiesen

94 % gelangen in Boden und Grundwas Se lation.

FORISTER M.L. et al. (2016): Increasing neonicotinoid use and the declining butterfly fauna of lowland California. In: Biology Letters 12: 20160475. The Royal Society Publishing.

HLADIK M.L. et al. (2016): Exposure of native bees foraging in an agricultural landscape to current-use pesticides. In: Science of the Total Environment 542 (2016) 469-477

KERR J.T. (2017): A cocktail of toxins. The effects of sustained neonicotinoid exposure on bees depend on location, but are usually negative. In: SCIENCE Magazine, Vol. 356, Issue 6345, 30.06.2017

LIMAY-RIOS V. et al. (2015): Neonicotinoid insecticide residues in soil dust and associated parent soil in fields with a history of seed treatment use on crops in southwestern Ontario. In: Environmental Toxicology and Chemistry; DOI: 10.1002/etc.3257

ENTOMOLOGISCHER VEREIN KREFELD E.V. (2017): Kenntnisstand zu Pestiziden und "Nichtzielarten" – Toxizität, Persistenz, systemische Wirkung und Anwendung im Bereich "geschützter Biotope". TRUSCH R. (2017): Insektenschwund. Hintergründe, Beobachtungen, Zusammenhänge. Präsentation zur Fachtagung der Naturschutzbeauftragten und der hauptamtlichen Naturschutzfachkräfte im Regierungsbezirk Karlsruhe am 28. Juni 2017

TSVETKOV N. et al. (2017): Chronic exposure to neonicotinoids reduces honey bee health near corn crops. In: SCIENCE Magazine, Vol. 356, 1396-1397 (2017)

WENZEL K-W. (2015): Neonikotinoid-Insektizide als Verursacher des Bienensterbens. Ein Addendum zum Beitrag von Hans-Joachim Flügel in der Märzausgabe der EZ (Hymenoptera: Apidae). In: Entomologische Zeitschrift, Schwanfeld, 125 (2) 2015

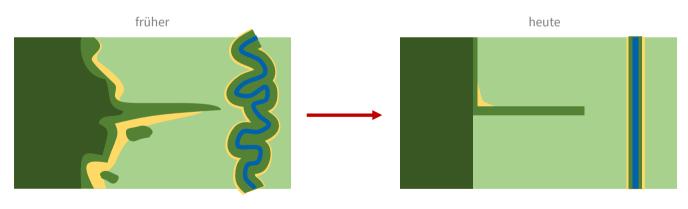
WOOD J.T., Goulson D. (2017): The Environmental Risks of neonicotinoid pesticides: a review of the evidence post-2013. In: bioRxiv The Preprint Server For Biology; DOI: 10.1101/098897

WOODCOCK B.A. et al. (2016): Impacts of neonicotinoid use on long-term population changes in wild bees in England. In: NATURE COMMUNICATIONS; DOI: 10.1038/ncomms12459

WOODCOCK B.A. et al. (2017): Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. In: SCIENCE Magazine, Vol. 356, 1393-1395 (2017); DOI: 10.1126/science.aaa1190

3 Überfrachtung mit Stickstoff

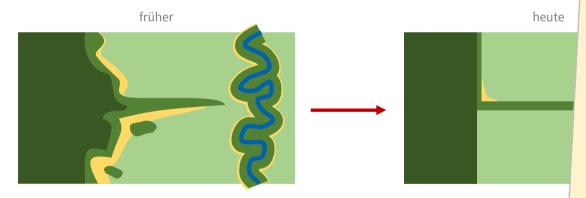
Heute wird unsere Landschaft mit Stickstoff aus der Landwirtschaft (Mist, Gülle und Gärreste), dem Straßenverkehr sowie aus industriellen und städtischen Gas-, Kohle- und Ölverbrennungsanlagen (Stickoxide) überfrachtet


- In Niedersachsen werden pro Jahr rund 60 Millionen Tonnen Gülle, Mist und Gärreste aus Biogasanlagen in die Landschaft getragen
- Deutschlandweit besteht aktuell ein Stickstoffüberschuss im Offenland von rund 97 %
- Folge: Das Spektrum an Pflanzenarten reduziert sich zunehmend auf wenige stickstoffverträgliche oder stickstoffliebende Arten wie Löwenzahn oder Brennnessel. Entsprechend gering ist die Artenvielfalt der Insekten

4 Gerade Linien in quadratischen Landschaften

In einer geordneten und auf dem Reißbrett geplanten Landschaft wie wir sie heute vorfinden, gibt es kaum noch Platz für natürliche Entwicklungen.

Gerade Linien führen zu einem immensen Flächenverlust der Biotoptypen. Weniger Lebensraum bedeutet weniger Tiere und Pflanzen


Hecken, Böschungen sowie Waldrand- und Ufervegetationen wurden in den letzten Jahrzehnten in erheblichem Umfang reduziert. Die Folge: Rückzugsräume, Entwicklungsräume und Nahrungsquellen für Insekten verschwinden zunehmend aus unserer Landschaft

4 Gerade Linien in quadratisch

In einer geordneten und auf dem Reißbrett geplanter heute vorfinden, gibt es kaum noch Platz für natürlic

Hecken, Böschungen sowie Waldrand- und Ufer den letzten Jahrzehnten in erheblichem Umfan Rückzugsräume, Entwicklungsräume und Nahr verschwinden zunehmend aus unserer Landschart:

~ Verkoppelung ~

Es geht ein Mann durch das bunte Land; Die Messkette hält er in der Hand.

Sieht vor sich hin und sieht sich um; »Hier ist ja alles schief und krumm.«

Er misst wohl hin und misst wohl her; »Hier geht ja alles kreuz und quer!«

Er blickt zum Bach im Tale hin; »Das Buschwerk dort hat keinen Sinn!«

Zum Teiche zeigt er mit der Hand; »Das gibt ein Stück Kartoffelland!«

Der Weg macht seinen Augen Pein; »Der muss fortan schnurgerade sein!«

Die Hecke dünket ihm ein Graus; »Die roden wir natürlich aus!«

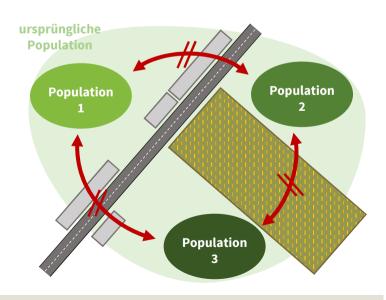
Der Wildbirnbaum ist ihm zu krumm; »Den hauen wir als ersten um!«

Die Pappel scheint ihm ohne Zweck; »Die muss da selbstverständlich weg!«

Und also wird mit vieler Kunst Die Feldmark regelrecht verhunzt.

Hermann Löns, 1924 Leipzig

5


Verinselung

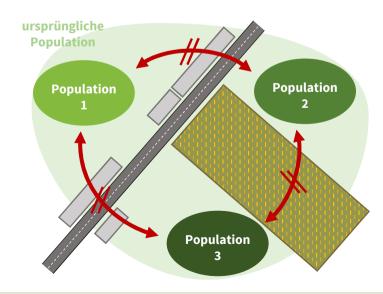
Ursprünglich zusammenhängende Lebensräume werden durch den Bau von Siedlungen, Straßen, Bahnlinien, Staustufen sowie vor allem, durch die intensive Agrarnutzung in mehrere Untereinheiten zerschnitten.

Die Folgen:

- Tiere und Pflanzen werden reproduktiv voneinander getrennt (Separation)

(Fehlender genetischer Austausch führt zu verminderter Resistenz gegenüber Krankheiten und mikroklimatischen Veränderungen im Teilhabitat)

5


Verinselung

Ursprünglich zusammenhängende Lebensräume werden durch den Bau von Siedlungen, Straßen, Bahnlinien, Staustufen sowie vor allem, durch die intensive Agrarnutzung in mehrere Untereinheiten zerschnitten.

Die Folgen:

Ist die "Populationsinsel" kleiner als der Aktionsradius einer Insektenart, werden die Einflüsse von Schadstoffen aus dem Umfeld auf diese Art umso größer.

(Siehe Hypothese 1: Vergiftung der Landschaft)

6 Habitatzerstörung

Täglich fallen Lebensräume von Tieren und Pflanzen dem Bau von Siedlungen, Straßen, Industriegebieten, Bahnlinien, Stromleitungen und Windenergieanlagen zum Opfer. Dank gesetzlicher Regelungen werden die meisten Eingriffe in Form von Biotopanlage, Biotoppflege und Durchführung populationserhaltender Maßnahmen kompensiert. Verlorene Lebens- und Fortpflanzungsstätten können i.d.R. ersetzt werden, der durch eine Baumaßnahme versiegelte Naturraum ist jedoch dauerhaft verloren.

Deutschland hat eine Fläche von rund 35,7 Mio. Hektar. 16,6 Mio. Hektar davon, sind reine Agrarflächen, welche aus Sicht der Biodiversität degradierte Lebensraumflächen darstellen.

Das entspricht einer Fläche von 94 Fußballfeldern pro Jahr

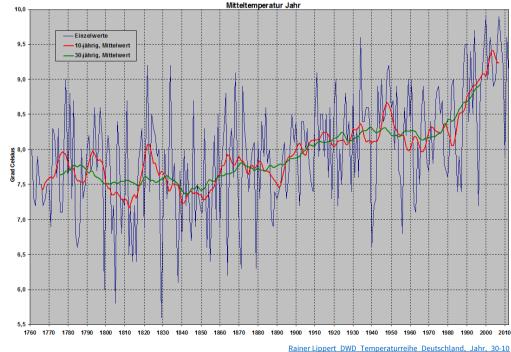
http://www.bmub.bund.de/themen/nachhaltigkeitinternationales/nachhaltige-entwicklung/strategie-undumsetzung/reduzierung-des-flaechenverbrauchs/

frage/landwirtschaftliche-nutzflaeche-in-deutschland/

7 Habitatentwertung

Häufig werden die Vorkommen sensibler Tier- und Pflanzenarten durch falsche Pflege und Intensivierung, aufgrund fehlenden Verantwortungsbewusstseins, Fehlanreizen durch Förderinstrumente der Landwirtschaft sowie dem Streben nach maximalem Ertrag pro Fläche, geschädigt oder zerstört

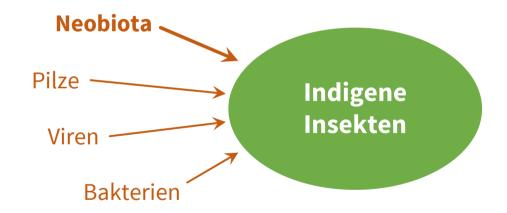
- zu häufige Mahd (Fortpflanzungserfolg der Insekten wird erheblich gestört / Artenvielfalt der Pflanzen geht verloren)
- zu frühe Mahd (Pflanzen kommen nicht zur Samenreife, Arten gehen verloren)
- Nutzungsaufgabe (Folge: Verbuschung und Sukzession)
- Intensivierung (z.B. ausbringen von Dünger auf magerem Grünland)
- **Sukzession** (Biotope werden nicht gepflegt Lebensraumtypen mit angepassten Arten gehen verloren)
- fehlende Blüh- und Randstreifen (intensive Äcker werden bis an den Feldwegrand bewirtschaftet "Agrarwüsten")



Klimawandel

Auch in Deutschland ist die Klimaerwärmung im vollen Gange. So waren die Jahre 2000, 2002, 2006, 2007, 2011, 2014, 2015 und 2016, neben 1934 und 1994, alle in der Top 10 der wärmsten Jahre seit Beginn der Aufzeichnungen 1881!

Mit dem Jahr 2017 wird ein weiteres Top 10 Jahr folgen.



8

Klimawandel

Folgen durch Neobiota, Pilze, Viren, ...

Negative Einflüsse durch neue Tier- und Pflanzenarten sowie durch Pilze, Viren und Bakterien sind möglich jedoch schwer nachweisbar

9

Klimawandel

Folgen durch Veränderung der Temperatur und der Niederschläge im Jahresverlauf

Der Klimawandel hat einen enormen Einfluss auf die fragile Entwicklung vieler Insektengruppen. Mildere Temperaturen und höhere Niederschlagsmengen im Winter, trockenwarmes Frühjahr sowie eine fehlende Schneedecke und ausbleibender Frost prägen zunehmend den typischen Wetterverlauf in Deutschland

- Der Jahresniederschlag hat im Westen Deutschlands um 20 % zugenommen. Im Osten ist dagegen kein klarer Trend erkennbar
- Insgesamt nehmen die Niederschläge im Winter zu. Im Frühjahr fallen sie dagegen zunehmend geringer aus

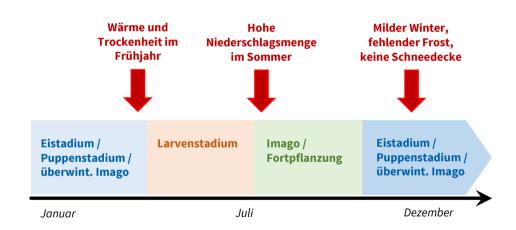
9

Klimawandel

Folgen durch Veränderung der Temperatur und der Niederschläge im Jahresverlauf

Diese Abweichungen führen zu:

Arealverschiebungen


(Zuzug neuer wärmeliebender Arten (Konkurrenz), Lebensraumverlust durch Austrocknung bei feuchteliebenden Arten, Ausweichen der Arten in höher gelegene oder nördliche Regionen (führt zu Verinselung der Populationen / Sackgasse), ...)

Desynchronisation

(Nahrungsmangel durch zu frühen Schlupf, wenn Wirtspflanzen noch nicht vorhanden sind, - oder Nahrungsmangel durch zu geringes Nektarangebot. Tod durch Kälteeinbruch (Beispiel Frühjahr 2017), Ausbildung zusätzlicher Generationen bei Faltern, welche keine oder nur noch wenig Nahrung vorfinden, ...)

Veränderte Nahrungsketten

(Ausbreitung oder Zuzug neuer/anderer Arten kann in bestimmten Aralen zu Nahrungskonkurrenz und veränderten Räuber-Beute-Verhältnissen führen mit negativen Folgen für ursprüngliche Arten, ...)

Erkrankungen

(Die Bedingungen für Parasiten, Schädlinge, Bakterien und Pilzkrankzeiten werden durch milde Winter und höhere Niederschläge im Sommer gefördert)

9

Klimawandel

Folgen durch Veränderung der Temperatur und der Niederschläge im Jahresverlauf

Der Schlüsselblumen-Würfelfalter (*Hamearis lucina*) – Beispiel für die Empfindlichkeit der Tagfalter auf klimatische Veränderungen:

Benötigt offene Kalkmagerrasen mit gutem Wiesen-Schlüsselblumenbestand als Wirtspflanze zur Eiablage und Futterpflanze der Raupen.

Meidet zunehmend Südhänge wegen immer häufigerer Austrocknung der Wirtspflanzen, durch trockenwarmes Frühjahr.

Geeignete Habitate in Nordlagen sind kaum vorhanden

Sucht darum ausschließlich West- und Südwesthänge auf.

Anpassung an neue Situation durch veränderte Eiablagestrategie:

- Anpassung der Gelegegröße an das Austrocknungsrisiko der Wirtspflanze
- In extremen Fällen werden die Eier sogar einzeln abgelegt, für eine bessere Risikostreuung

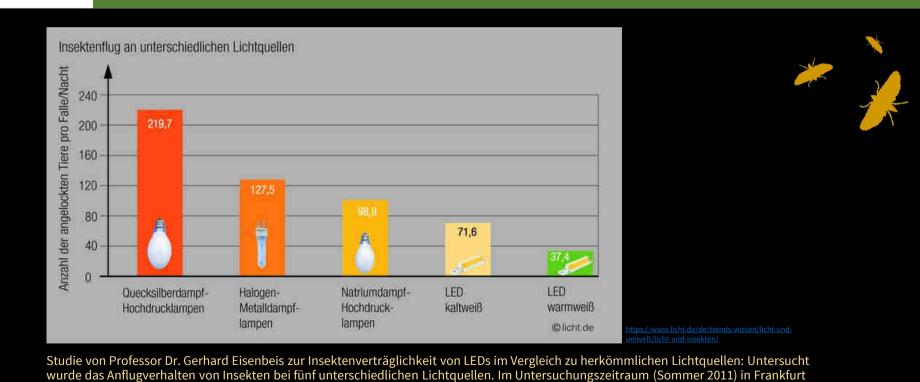
Weiterer Temperaturanstieg im Zuge des Klimawandels gefährdet die letzten Vorkommen, da der Schlüsselblumen-Würfelfalter nur eine geringe Mobilität aufweist!

10 Lichtverschmutzung

Die allgegenwärtige künstliche Beleuchtung stellt nachtaktive Insekten vor immer größere Probleme und verändert ganze Ökosysteme

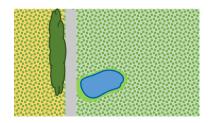
Zahlreiche Falterarten werden vom Licht der Straßenlaternen oder Leuchtreklamen angezogen. Grund dafür ist das kurzwellige Licht mit einem hohen Blau- und Ultraviolettanteil, auf das die Sensoren der Falter zur räumlichen Orientierung empfindlich reagieren

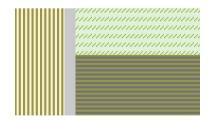
Diese künstlichen Lichtquellen stören erheblich den Lebensrhythmus und das Fortpflanzungsverhalten nachtaktiver Insekten! Häufig verbrennen sie an der heißen Oberfläche der Lampen



Durch Verwendung von LEDs oder Natriumdampf-Hochdrucklampen kann das Risiko für Insekten reduziert werden (kein UV-Anteil, Warmlicht)

10 Lichtverschmutzung


am Main wurden die getesteten Lichtquellen mit Insektenfanggefäßen versehen und täglich die Ausbeute gezählt


11 Umbruch von Grünland in Ackerland

Neben der Intensivierung der Grünlandnutzung hat vor allem die Umwandlung von Dauergrünland in Ackerland einen wesentlichen dezimierenden Einfluss auf die Insektenfauna.

Deutschlandweit wurden in den letzten 10 Jahren über 5 % des Dauergrünlands in Ackerland umgebrochen

12 Verkehrsopfer

Ein weiteres Puzzlestück auf der Suche nach einer Antwort für den derzeitigen dramatischen Rückgang der Insektenfauna, sind die Millionen von Insekten welche Tag täglich im Straßen-, Bahn- und Flugverkehr getötet werden

13 Naturferne Gärten

In Regionen in denen es im Offenland kaum noch natürliche Habitate für Falter, Wildbienen oder Schwebfliegen gibt, sind naturnahe und Blütenreiche Gärten und Parkanlagen in Ortschaften wichtige Rückzugsgebiete für Insekten. Ein naturnah gestalteter Garten erfordert jedoch einen gewissen Umfang an Pflege und der Duldung natürlicher Entwicklungen.

Leider häufen sich in unseren Siedlungen zunehmend sogenannte "Designergärten" mit perfekt getrimmten Golfplatzrasen, Steinmauern und Mosaiken aus Kies anstelle blühender Hecken und Stauden. Ein Trend mit negativen Folgen für die Insektenfauna im Siedlungsraum

14 Summations- und Kaskadeneffekte

Oft ist es die Summe aus mehreren möglichen Ursachen, die in einem Gebiet zum Rückgang der Artenvielfalt führt (= Summationseffekt). Mit steigender Anzahl der negativen Einflüsse, nimmt das Ausmaß des Artenrückgangs zu. Des Weiteren können Auswirkungen unbekannte Folgewirkungen nach sich ziehen (= Kaskadeneffekt) Beispiel: Stickstoffeintrag in einem Gebiet führt zum Verlust wichtiger Wirtspflanzen, wodurch die Insektenvielfalt sinkt. Dadurch kann es zu einer Bestandsabnahme insektenfressender Vögel kommen.

15

Gesellschaft und Konsumverhalten

Schlussendlich haben alle zuvor genannten, möglichen Ursachen des dramatischen Rückgangs der Insektenfauna einen gemeinsamen Nenner – uns!

Landwirtschaft, Produktion, Dienstleistung, Mobilität und Lebensmittelindustrie reagieren nicht nur, sondern hängen unmittelbar von unseren täglichen Bedürfnissen, unserem Konsumverhalten und Ansprüchen ab. Unser Lebensstil formt die Landschaft und die belebte Natur vor unserer Haustüre. Solange die wohlhabenden Gesellschaftsschichten nicht für einen genügsameren Lebensstil mit geringeren Ansprüchen, weniger Konsum und weniger Mobilität bereit sind, werden alle Bemühungen dem

15

Gesellschaft und Konsumverhalten

Verlust der Artenvielfalt entgegenzuwirken, dem Druck der Nachfrage und der Marktwirtschaft nicht standhalten können.

Hier ist vor allem die Politik gefragt, da diese dem Verbraucher und den Produzenten oft keine Wahlmöglichkeiten mehr lässt. So muss z.B. in der Vielzahl politischer Festlegungen im Bereich der Landwirtschaft und Lebensmittelproduktion geregelt werden, dass Pestizide und Stickstoff nicht mehr im Übermaß auf die Äcker gebracht werden und eine giftfreie Erzeugung zukünftig stärker gefördert wird.

1 Pestizidreduktionsprogramm

Chemisch-synthetische Herbizide und Insektizide haben erwiesenermaßen negative Auswirkungen auf Insekten. Es wird vermutet, dass sie sogar eine der Hauptursachen des Insektenrückgangs sind. Von 2002 bis 2014 stieg der Inlandsabsatz an Pestizidwirkstoffen in Deutschland um gut 25 Prozent, gleichzeitig sind heutige Wirkstoffe wie z.B. die Neonicotinoide bis zu 7.000 Mal giftiger als das früher eingesetzte Mittel DDT. Ein Pestizidreduktionsprogramm auf Landesebene sollte mindestens die folgenden Maßnahmen umfassen:

Anpassung des Förderprogramms FAKT: Erhöhung des Titels für den Verzicht auf chemisch-synthetische Produktionsmittel (D1) und für Herbizidverzicht im Ackerbau (E3)

1 Pestizidreduktionsprogramm

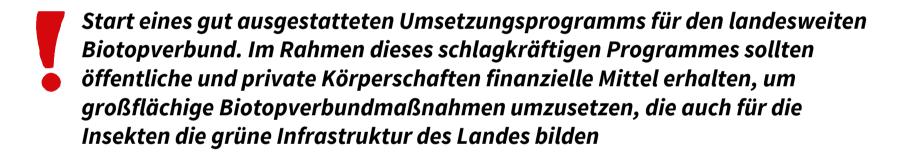
- Stärkere Förderung des Ökolandbaus (Umstellungs- und Beibehaltungsförderung) und Ausbau der landwirtschaftlichen Ausbildung und Beratung in Bezug auf pestizidfreie Anbaumethoden.
- Erweiterung des Verbots von Pestiziden in Wasser- und Quellschutzgebieten um Wirkstoffe wie Glyphosat und Neonicotinoide in der Schutzgebiets- und Ausgleichs-Verordnung (SchALVO) unter § 4
- Untersagung des Einsatzes von Pestiziden in Naturschutzgebieten, Kernund Pflegezonen von Biosphärengebieten, flächigen Naturdenkmalen, FFH-Lebensraumtypen in FFH-Gebieten und § 30 / § 33 -Biotopen

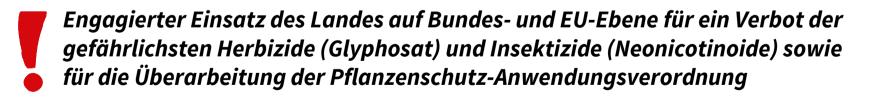
1 Pestizidreduktionsprogramm

- Vollständiger Verzicht auf chemisch-synthetische Pestizide auf landeseigenen Flächen, egal ob auf Grünanlagen und Grünflächen landeseigener
- Liegenschaften, auf Staatsdomänen oder auf verpachteten landwirtschaftlichen Landesflächen
- Engagierter Einsatz des Landes auf Bundes- und EU-Ebene für ein Verbot der gefährlichsten Herbizide (Glyphosat) und Insektizide (Neonicotinoide) sowie für die Überarbeitung der Pflanzenschutz-Anwendungsverordnung

2 Lebensräume und Nahrung der Insekten sichern

Arten- und blütenreiches Grünland (Wiesen und Weiden), Saumstrukturen entlang von Schlaggrenzen, Wald- und Gewässerränder mit Hochstauden, krautigen Pflanzen und Gräsern sowie Brachen und Blühflächen auf Äckern sind wichtige Insektenlebensräume. Um sie zu sichern und zu erweitern, sollte das Land die folgenden Maßnahmen ergreifen:




Anpassung des Förderprogramms FAKT durch Zulassung mehrjähriger Blühmischungen und Aufnahme einer Prämie für den Weidegang und die Heufütterung von Milchkühen

2 Lebensräume und Nahrung der Insekten sichern

2 Lebensräume und Nahrung der Insekten sichern

Gesetzliche Unterschutzstellung von Streuobstwiesen, FFH-Mähwiesen und Magerrasen nach § 33 NatSchG. Der Einsatz von chemisch-synthetischen Pestiziden, Entwässerungsmaßnahmen und die Ausbringung von mineralischem Stickstoffdünger, Gülle und Gärresten sind damit auszuschließen

3 Insekten-Monitoring

Die Forschungsergebnisse zum Insektenrückgang sind lückenhaft, weil es bisher kein staatliches Monitoring gibt.

Die Landesregierung sollte die LUBW beauftragen, in Zusammenarbeit mit den Naturkundemuseen und den Naturschutzverbänden einen landesweiten Insekten-Monitoring-Plan aufzustellen und umzusetzen

Mit einem landesweiten Stichprobennetz für Massenermittlungen

Allgemeine Informationen zum Insektensterben

MELLIFERA BERLIN (2017): Der stumme Frühling. Das Bienensterben ist Teil von etwas noch Größerem. In: http://mellifera-berlin.de/der-stumme-fruehling-das-bienensterben-ist-teil-von-etwas-noch-groesserem-ante-portas/

SÄRING F., Schaffer S., Richter R., Wolf R. & Bernhard D. (2016): Untersuchung zum Vorkommen der Aculeata (Hymenoptera) im Kronenraum des Leipziger Auwaldes.

DEUTSCHER BUNDESTAG (2017): Drucksache 18/13142. Antwort der Bundesregierung auf die Kleine Anfrage der Abgeordneten Steffi Lemke, Harald Ebner, Bärbel Höhn, weiterer Abgeordneter und der Fraktion BÜNDNIS 90/DIE GRÜNEN - Drucksache 18/12859 -. Insekten in Deutschland und Auswirkungen ihres Rückgangs.

TUMBRINCK J. (2016): Ursachen und Auswirkungen des Biodiversitätsverlustes bei Insekten. Präsentation vom 13.01.2016

TRUSCH R. (2017): Insektenschwund. Hintergründe, Beobachtungen, Zusammenhänge. Präsentation zur Fachtagung der Naturschutzbeauftragten und der hauptamtlichen Naturschutzfachkräfte im Regierungsbezirk Karlsruhe am 28. Juni 2017

SCHUCH S., Bock J., Krause B., Wesche K., Schaefer M. (2011): Long-term population trends in three grassland insect groups: a comparativ analysis of 1951 and 2009. In: Journal of Applied Entomology.

ENTOMOLOGISCHER VEREIN KREFELD E.V. (2017): Bestandsrückgänge von Fluginsekten in Offenlandbiotopen der Kulturlandschaft – Methoden, Biomassen, Artenspektren. Präsentation.

VON ORLOW M. (2017): Bestandsaufnahme des Insektensterbens. Ein Beitrag der BAG Hymenoptera des NABU zum Fachgespräch "Stummer Frühling ante portas – Was tun gegen das dramatische Insektensterben?". Bündnis 90/DIE GRÜNEN Bundestagsfraktion. Präsentation vom 6.03.2017

ZUCCHI H. (2017): Das leise Sterben der Insekten. Schwund der Vielfalt überall. In: NATIONALPARK 3/2017

FARTMANN T. (2017): Überleben in fragmentierten Landschaften. Grundlagen für den Schutz der Biodiversität Mitteleuropas in Zeiten des globalen Wandels. In: Naturschutz und Landschaftsplanung 49 (9), 2017

LEUSCHNER C., Schipka F. (2004): Vorstudie. Klimawandel und Naturschutz in Deutschland. BfN-Skripten 115

BETHGE P. (2017): Sommer der Stille. In: Der Spiegel 36/2017

SCHORRADT T. (2017): Kirchheimer Vogelkundler schlägt Alarm. Die Schmetterlinge fliegen nicht mehr. In: Stuttgarter Zeitung 37/2017

Informationen zum Rückgang der Falter

EISENBEIS G., Eick K. (2011): Studie zur Anziehung nachtaktiver Insekten an die Straßenbeleuchtung unter Einbeziehung von LEDs. In: Natur und Landschaft 86 (2011): 07

FOX R., Parsons M.S., Chapman J.W., Wolwod I.P., Warren M.S., Brooks D.R. (2013): The State of Britain's Larger Moths 2013. Butterfly Conservation and Rothamsted Research. UK

DEUTSCHE WILDTIER STIFTUNG (2017): Viele Deutsche vermissen die Schmetterlinge. Repräsentative Umfrageergebnisse des Instituts für Demoskopie Allensbach im Auftrag der Deutschen Wildtier Stiftung. Pressemitteilung vom 21.08.2017

DEUTSCHE WILDTIER STIFTUNG, Institut für Demoskopie Allensbach (2017): Abbildungen zur Umfrage. Präsentation.

HABEL J.C., Segerer A., Schmitt T. (2016): Früher gab es mehr Schmetterlinge. Langzeitstudie untersucht Entwicklung von Tagfaltern und Widderchen. In: naturmagazin 3/2016

HABEL J.C., Segerer A., Ulrich W., Torchyk O., Weisser W.W., Schmitt T. (2015): Butterfly community shifts over two centuries. In: Conservation Biology 30 (4) 2015

HUEMER P. (2016): Ausgeflattert. Der stille Tod der österreichischen Schmetterlinge. Herausgegeben von: Blühendes Österreich – REWE International gemeinnützige Privatstiftung, Umweltschutzorganisation GLOBAL 2000/Friends of the Earth Austria.

MAES D., Van Dyck H. (2001): Butterfly diversity loss in Flanders (north Belgium): Europe's worst case scenario? In: Biological Conservation 99 (2001) 263-276

REICHHOLF J. (2017): Das Verschwinden der Schmetterlinge. Vorabinformationen aus dem Statusbericht von Prof. Dr. Josef H. Reichholf, 2017. Herausgegeben von: Deutsche Wildtier Stiftung

SCHÖPWINKEL R. (2017): Metastudie (Literaturauswertung) zum Rückgang der Schmetterlinge (Tagfalter) in Deutschland (speziell Nordrhein-Westfalen). 5.05.2017

TARMANN G. M. (2009): Die Vinschger Trockenrasen – ein Zustandsbericht auf Basis der Bioindikatoren Tagfalter und Widderchen (Lepidoptera: Rhopalocera, Zygaenidae). Wissenschaftliches Jahrbuch der Tiroler Landesmuseen 2, S. 306–350.

VAN SWAAY C., Warren M., Lois G. (2006): Biotope use and trends of European butterflies. In: Journal of Insect Conservation (2006) 10: 189-209

SZENTKIRALYI F. (2002): Fifty-year-long insect survey in Hungary: T. Jermy's contributions to light-trapping. In: Acta Zoologica Academiae Scientiarum Hungaricae 48 (Suppl. 1), pp. 85-105, 2002

EUROPEAN ENVIRONMENT AGENCY (2013): The European Grassland Butterfly Indicator: 1990-2011. In: EEA Technical report 11/2013

VAN DYCK H., Van Strien A.J., Maes D., Van Swaay C.A.M. (2009): Declines in Common, Widespread Butterflies in a Landscape under Intense Human Use. In: Conservation Biology (2009)

WENZEL M., Schmitt T., Weitzel M., Seitz A. (2006): The severe decline of butterflies on western German calcareous grasslands during the last 30 years: A conservation problem. In: Biological Conservation 128 (2006) 542-552

ZEIT ONLINE (2017): Biologe beklagt Verschwinden der Schmetterlinge. In: http://www.zeit.de/news/2017-08/21/tiere-biologe-beklagt-verschwinden-der-schmetterlinge-21152805

Informationen zum Rückgang der Käfer

BROOKS D.R., Bater J.E., Clark S.J., Monteith D.T., Andrews C., Corbett S.J., Beaumont D.A., Chapman J.W. (2012): Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. In: Journal of Applied Ecology 2012, 49, 1009-1019

Informationen zum Rückgang der Schwebfliegen

TUMBRINCK J. (2016): Ursachen und Auswirkungen des Biodiversitätsverlustes bei Insekten. Präsentation vom 13.01.2016

BIESMEIJER J.C., Roberts S.P.M., Reemer M., Ohlemüller R., Edwards M., Peeters T., Schaffers A.P., Potts S.G., Kleukers R., Thomas C.D., Settele J., Kunin W.E. (2006): Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. SCIENCE, 10.1126/science.1127863

Informationen zum Rückgang der Wildbienen

MELLIFERA BERLIN (2017): Der stumme Frühling. Das Bienensterben ist Teil von etwas noch Größerem. In: http://mellifera-berlin.de/der-stumme-fruehling-das-bienensterben-ist-teil-von-etwas-noch-groesserem-ante-portas/

SÄRING F., Schaffer S., Richter R., Wolf R. & Bernhard D. (2016): Untersuchung zum Vorkommen der Aculeata (Hymenoptera) im Kronenraum des Leipziger Auwaldes.

SCHWENNINGER H.R., Scheuchl E. (2016): Rückgang von Wildbienen, mögliche Ursachen und Gegenmaßnahmen (Hymenoptera, Anthophila).

VON ORLOW M. (2017): Bestandsaufnahme des Insektensterbens. Ein Beitrag der BAG Hymenoptera des NABU zum Fachgespräch "Stummer Frühling ante portas – Was tun gegen das dramatische Insektensterben?". Bündnis 90/DIE GRÜNEN Bundestagsfraktion. Präsentation vom 6.03.2017

BIESMEIJER J.C., Roberts S.P.M., Reemer M., Ohlemüller R., Edwards M., Peeters T., Schaffers A.P., Potts S.G., Kleukers R., Thomas C.D., Settele J., Kunin W.E. (2006): Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. SCIENCE, 10.1126/science.1127863

Informationen zu den Auswirkungen der Neonicotinoide auf Insekten

BERNHARDT E.S., Rosi E.J., O Gessner M. (2017): Synthetic chemicals as agents of global change. In: The Ecological Society of America, Front Ecol Environ 2017; doi: 10.1002/fee.1450

BOTIAS C., David A., Horwood J., Abdul-Sada A., Nicholls E., Hill E.M., Goulson D. (2015): Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. In: Environmental Science & Technology; DOI: 10.1021/acs.est 5b03459

BOITAS C., David A., Hill E.M., Goulson D. (2017): Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. In: Environmental Pollution 2017; DOI: 10.1016/j.envpol.2017.01.001

DOCCOLA J.J., Hascher W., Aiken J.J., Wild P.M. (2012): Treatment Strategies Using Imidacloprid in Hemlock Wolly Adelgid (Adelges tsugae Annand) Infested Eastern Hemlock (Tsuga canadensis Carrière) Trees. In: Arboriculture & Urban Forestry 38 (2): March 2012

FORISTER M.L., Cousens B., Harrison J.G., Anderson K., Thorne J.H., Waetjen D., Nice C.C., De Parsia M., Hladik M.L., Meese R., Van Vliet H., Shapiro A.M. (2016): Increasing neonicotinoid use and the declining butterfly fauna of lowland California. In: Biology Letters 12: 20160475. The Royal Society Publishing.

HLADIK M.L., Vandever M., Smalling K.L. (2015): Exposure of native bees foraging in an agricultural landscape to current-use pesticides. In: Science of the Total Environment 542 (2016) 469-477

KERR J.T. (2017): A cocktail of toxins. The effects of sustained neonicotinoid exposure on bees depend on location, but are usually negative. In: SCIENCE Magazine, Vol. 356, Issue 6345, 30.06.2017

LIMAY-RIOS V., Forero L.G., Xue Y., Smith J., Baute T., Schaafsma A. (2015): Neonicotinoid insecticide residues in soil dust and associated parent soil in fields with a history of seed treatment use on crops in southwestern Ontario. In: Environmental Toxicology and Chemistry; DOI: 10.1002/etc.3257

ENTOMOLOGISCHER VEREIN KREFELD E.V. (2017): Kenntnisstand zu Pestiziden und "Nichtzielarten" – Toxizität, Persistenz, systemische Wirkung und Anwendung im Bereich "geschützter Biotope". Präsentation.

TRUSCH R. (2017): Insektenschwund. Hintergründe, Beobachtungen, Zusammenhänge. Präsentation zur Fachtagung der Naturschutzbeauftragten und der hauptamtlichen Naturschutzfachkräfte im Regierungsbezirk Karlsruhe am 28. Juni 2017

TSVETKOV N., Samson-Robert O., Sood K., Patel H.S., Malena D.A., Gajiwala P.H., Maciukiewicz P., Fournier V., Zayed A. (2017): Chronic exposure to neonicotinoids reduces honey bee health near corn crops. In: SCIENCE Magazine. Vol. 356. 1396-1397 (2017)

WENZEL K-W. (2015): Neonikotinoid-Insektizide als Verursacher des Bienensterbens. Ein Addendum zum Beitrag von Hans-Joachim Flügel in der Märzausgabe der EZ (Hymenoptera: Apidae). In: Entomologische Zeitschrift, Schwanfeld, 125 (2) 2015

WOOD J.T., Goulson D. (2017): The Environmental Risks of neonicotinoid pesticides: a review of the evidence post-2013. In: bioRxiv The Preprint Server For Biology; DOI: 10.1101/098897

WOODCOCK B.A., Isaac N.J.B., Bullock J.M., Roy D.B., Garhwaite D.G., Crowe A., Pywell R.F. (2016): Impacts of neonicotinoid use on long-term population changes in wild bees in England. In: NATURE COMMUNICATIONS; DOI: 10.1038/ncomms12459

Informationen zu den Auswirkungen der Neonicotinoide auf Insekten

WOODCOCK B.A., Bullock J.M., Shore R.F., Heard M.S., Pereira M.G., Redhead J., Ridding L., Dean H., Sleep D., Henrys P., Peyton J., Hulmes S., Hulmes L., Sárospataki M., Saure C., Edwards M., Genersch E., Knäbe S., Pywell R.F. (2017): Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. In: SCIENCE Magazine, Vol. 356, 1393-1395 (2017); DOI: 10.1126/science.aaa1190

Informationen zur Wirkung von Pestiziden auf Wasserorganismen

SCHÄFER R.B., Kühn B., Malaj E., König A., Gergs R. (2016): Contribution of organic toxicants to multiple stress in river ecosystems. Freshwater Biology (2016) 61, 2116-2128

BEKETOV M.A., Kefford B.J., Schäfer R.B., Liess M. (2013): Pesticides reduce regional biodiversity of stream invertebrates. PNAS. Vol. 110 No. 27, 11039-11043

Informationen zum Rückgang der Vögel

STÜBING S., Dröschmeister R., Frederking W., Gedeon K., Gerlach B., Grüneberg C., Karthäuser J., Langemach T., Schuster B., Trautmann S., Wahl J. (2013): Vögel in Deutschland – 2013. DDA, BfN, LAG VSW, Münster.

WAHL J., Dröschmeister R., Gerlach B., Grüneberg C., Langgemach T., Trautmann S., Sudfeldt C. (2015): Vögel in Deutschland – 2014. DDA, BfN, LAG VSW, Münster.

DRÖSCHMEISTER R., Sudfeldt C., Trautmann S. (2012): Zahl der Vögel halbiert: Landwirtschaftspolitik der EU muss umweltfreundlicher werden. In: Der Falke 59, 2012

HALLMANN C.A., Foppen R.P.B., Van Turnhout C.A.M., De Kroon H., Jongejans E. (2014): Declines in insectivorous birds are associated with high neonicotinoid concentrations. In: NATURE, Vol. 511, 17.07.2014

RIOUX PAQUETTE S., Pelletier F., Garant D., Be' lisle M. (2014) Severe recent decrease of adult body mass in a declining insectivorous bird population. Proc. R. Soc. B 281: 20140649.

Weitere Literatur (nicht zitiert)

REEMER M., Smit J.T., Van Settnis W. (2003): Changes in ranges of hoverflies in the Netherlands in the 20th century (Diptera: Syrphidae). Proc. 13th Int. Coll. EIS, September 2001: pp. 53-60 (2003)

LOBO J.M. (2001): Decline of roller dung beetle (Scarabaeinae) populations in the Iberian peninsula during the 20th century. Biological Conservation 97 (2001) 43-50

BATILANI-FILHO M. & Hernandez M.I.M. (2017): Decline of Ecological Functions Performed by Dung Beetles in Areas of Atlantic Forest and Contribution of Rollers and Tunnellers in Organic Matter Removal. Environmental Entomology, 2017, 1-10 DOI: 10.1093/ee/nvx091

DUDLEY N., Attwood S.J., Goulson D., Jarvis D., Pervez Bharucha Z., Pretty J. (2017): How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems? Biological Conservation 209 (2017) 449-453

CAMERON S. A., Lozier J.D., Strange J.P., Koch J.B., Cordes N., Solter L.F., Griswold T.L. (2011): Patterns of widespread decline in North American bumble bees. PNAS. Vol. 108. No. 2, 662-667

DUPONT Y.L., Damgaard C., Simonsen V. (2011): Quantitative Historical Change in Bumblebee (Bombus spp.) Assemblages of Red Clover Fields. PLoS ONE 6(9): e25172. doi:10.1371/journal.pone.0025172

Seite	Autor
1	A. Schnabler
2	A. Schnabler
3	A. Schnabler (7x) / K. Büscher (4x) / K. Kiuntke (3x) / B. Etspüler (2x) / G. Franke / K. Kleinke / C. Kasulke / A. Zwick / NABU
4	
5	WWF
6	WWF
7	K. Kiuntke (2x) / A. Schnabler / B. Etspüler
8	K. Kiuntke (2x) / A. Schnabler / B. Etspüler
9	K. Kiuntke (2x) / A. Schnabler / B. Etspüler
10	K. Büscher (2x) / A. Schnabler / D. Bellmer
11	K. Kiuntke (2x) / K. Kleinke / K. Büscher
12	K. Kiuntke (2x) / K. Kleinke / K. Büscher
13	K. Kiuntke (2x) / K. Kleinke / K. Büscher
14	A. Schnabler (3x) / K. Kiuntke
15	S. Damerow / B. Etspüler
16	A. Schnabler (3x) / K. Kiuntke
17	K. Kiuntke (2x) / K. Kleinke / K. Büscher
18	A. Schnabler (3x) / K. Kiuntke
19	K. Kiuntke (2x) / A. Schnabler / B. Etspüler
20	K. Büscher (4x)
21	A. Schnabler (3x) / K. Kiuntke
22	A. Schnabler (3x) / K. Kiuntke

Seite	Autor
23	K. Kiuntke (2x) / K. Kleinke / K. Büscher
24	H. May (2x) / K. Büscher / B. Etspüler
25	A. Schnabler / B. Etspüler / K. Kiuntke / K. Büscher
26	A. Schnabler / B. Etspüler / K. Kiuntke / K. Büscher
27	A. Schnabler / B. Etspüler / K. Kiuntke / K. Büscher
28	A. Schnabler / B. Etspüler / K. Kiuntke / K. Büscher
29	A. Schnabler / B. Etspüler / K. Kiuntke / K. Büscher
30	A. Schnabler / B. Etspüler / K. Kiuntke / K. Büscher
31	A. Schnabler (3x) / K. Kiuntke
32	A. Schnabler (3x) / K. Kiuntke
33	K. Büscher (3x) / K. Kleinke
34	K. Büscher (3x) / K. Kleinke
35	S. Damerow / B. Etspüler
36	G. Franke / O. Rambow / K. Büscher
37	S. Damerow / B. Etspüler
38	A. Schnabler (3x) / K. Kiuntke
39	A. Schnabler (3x) / K. Kiuntke
40	A. Schnabler / K. Kleinke / K. Wesolowsky
41	A. Schnabler / K. Kleinke / K. Wesolowsky
42	A. Schnabler / K. Büscher / K. Kiuntke / B. Etspüler
43	E. Neuling
44	D. Vorbusch / K. Kleinke / K. Büscher / M. Frank

Seite	Autor
45	D. Vorbusch / K. Kleinke / K. Büscher / M. Frank
46	D. Vorbusch / K. Kleinke / K. Büscher / M. Frank
47	D. Vorbusch / K. Kleinke / K. Büscher / M. Frank
48	D. Vorbusch / K. Kleinke / K. Büscher / M. Frank
49	D. Vorbusch / K. Kleinke / K. Büscher / M. Frank
50	D. Vorbusch / K. Kleinke / K. Büscher / M. Frank
51	A. Schnabler
52	A. Schnabler
53	A. Schnabler
54	BirdLife International
55	•
56	A. Schnabler
57	
58	•
59	A. Schnabler
60	A. Schnabler
61	A. Schnabler
62	A. Schnabler
63	A. Schnabler
64	A. Schnabler
65	A. Schnabler
66	•

Seite	Autor
67	A. Schnabler
68	-
69	A. Schnabler
70	-
71	A. Schnabler (3x)
72	A. Schnabler (3x)
73	A. Schnabler
74	J. Enssle
75	H. May (3x) / Beton-Vertrieb Bonn-Köln GmbH
76	A. Schnabler
77	Sebastian Hennings (2x)
78	Sebastian Hennings (2x)
79	A. Schnabler
80	
81	
82	•
83	
84	-
85	K. Büscher
86	-
87	A. Schnabler

Seite	Autor
88	
89	
90	
91	
92	-
93	
94	-
95	
96	-
97	
98	-
99	A. Schnabler

